Number Sets

1. Natural Number – a counting number. Abbreviated as $N. \label{eq:Natural}$

Ex. {1, 2, 3, 4, 5, ...}

Natural numbers have an inherent property of either being prime or composite.

A **prime number** is a number whose *factors* are 1 and itself. A factor is a number when, multiplied to another number, yields the original number.

For instance, 7 is a prime number because it has two factors: 1 and 7. $1 \times 7 = 7$.

A composite number is not a prime number. So, 6 is not a prime number because it has four factors: 1, 2, 3, and 6.

2. Whole Number – the natural numbers, but with 0 in the list. Abbreviated as W. Ex. {0, 1, 2, 3, 4, 5, ...}

3. Integer – positives and negatives. Basically, the whole numbers, but also including their negatives. Abbreviated as Z, because of the German word for numbers, "Zahlen."
Ex. {..., -3, -2, -1, 0, 1, 2, 3, ...}

4. Rational number – The formal definition is that it is a number written as a <u>ratio</u> of $\frac{p}{q}$, where p and q are both integers. Abbreviated as \mathbb{Q} , for quotient. Basically, it's a number that is a fraction.

Three different ways to see rational numbers:

i) Fractions

Ex. $\frac{1}{2}$: 1 and 2 are both integers and they are written as a ratio.

Ex. $-\frac{3}{7}$: -3 and 7 are both integers and they are written as a ratio.

Ex. $\frac{5}{1}$: 5 and 1 are both integers and they are written as a ratio.

ii) *Terminating decimals* (decimals that stop) are also rational numbers. It's possible to rewrite a terminating decimal as a fraction.

Ex. $0.5 = \frac{1}{2}$, and 1 and 2 are both integers written as a ratio.

Ex. -3.81 is a terminating decimal.

Ex. 14.772 is a terminating decimal.

Ex.
$$0. \overline{1} = \frac{1}{9}$$

Ex. $-0. \overline{142857} = \frac{1}{7}$

Note: You do not have to turn every rational number into a fraction. Just knowing these three cases is enough to identify a rational number!

5. Irrational Number – Numbers that can't be written as a fraction. Literally means "not rational."

An irrational number:

- 1) Cannot be written as a fraction.
- 2) Cannot be a terminating decimal.
- 3) Cannot be a repeating decimal.

Ex. $\pi, \sqrt{2}, \sqrt{3}, 2\pi$

6. Real Number – Any number! Abbreviated as R.

Putting it all together:

- A number can be in more than one set. For instance, the number $\frac{5}{12}$ is in Q and R.
 - Ex. 4: N, W, I, Q, R Ex. -13: I, Q, R
 - Ex. $\sqrt{17}$: Irrational, R
- Operations (addition, subtraction, multiplication, division, exponents) can affect what set a number is in.

Ex. $\frac{2}{5} + \frac{3}{5}$ While both numbers are rational, if you add them together, you get $\frac{5}{5} = 1$. Therefore, it is natural, whole, rational, and real.

Ex. π + 5 Because π is an irrational number and 5 is a natural number, adding them together will get you another irrational number.

Guided Practice:

Identify all of the sets the following numbers are in:

1.	$-\frac{5}{16}$	(Q, R)
2.	83	(N, W, Z, Q, R)
3.	0	(W, Z, Q, R)
4.	$5 - \sqrt{45}$	(Irrational, R)
5.	10 - 5.266	(Q, R)

There are some numbers that don't belong in any set—if we ever see something like $\sqrt{-4}$, it's not possible to do. So it doesn't belong to a set.

Important: There is a difference between $\sqrt{-4}$ and $-\sqrt{4}$. The first one has no solution; the second one is -2.