Number Sets

1. Natural Number - a counting number. Abbreviated as N .

Ex. $\{1,2,3,4,5, \ldots\}$
Natural numbers have an inherent property of either being prime or composite.
A prime number is a number whose factors are 1 and itself. A factor is a number when, multiplied to another number, yields the original number.

For instance, 7 is a prime number because it has two factors: 1 and $7.1 \times 7=7$.
A composite number is not a prime number. So, 6 is not a prime number because it has four factors: $1,2,3$, and 6 .
2. Whole Number - the natural numbers, but with 0 in the list. Abbreviated as W .

Ex. $\{0,1,2,3,4,5, \ldots\}$
3. Integer - positives and negatives. Basically, the whole numbers, but also including their negatives. Abbreviated as \mathbb{Z}, because of the German word for numbers, "Zahlen."
Ex. $\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}$
4. Rational number - The formal definition is that it is a number written as a ratio of $\frac{p}{q}$, where p and q are both integers. Abbreviated as Q, for quotient. Basically, it's a number that is a fraction.

Three different ways to see rational numbers:

i) Fractions

Ex. $\frac{1}{2}: 1$ and 2 are both integers and they are written as a ratio.
Ex. $-\frac{3}{7}:-3$ and 7 are both integers and they are written as a ratio.
Ex. $\frac{5}{1}: 5$ and 1 are both integers and they are written as a ratio.
ii) Terminating decimals (decimals that stop) are also rational numbers. It's possible to rewrite a terminating decimal as a fraction.

Ex. $0.5=\frac{1}{2}$, and 1 and 2 are both integers written as a ratio.
Ex. -3.81 is a terminating decimal.
Ex. 14.772 is a terminating decimal.
iii) Repeating decimals (decimals that go on forever in a pattern) can be written as fractions.

Ex. $0.3333333333 \ldots \frac{1}{3}$
Ex. $0 . \overline{1}=\frac{1}{9}$
Ex. $-0 . \overline{142857}=\frac{1}{7}$

Note: You do not have to turn every rational number into a fraction. Just knowing these three cases is enough to identify a rational number!
5. Irrational Number - Numbers that can't be written as a fraction. Literally means "not rational."

An irrational number:

1) Cannot be written as a fraction.
2) Cannot be a terminating decimal.
3) Cannot be a repeating decimal.

Ex. $\pi, \sqrt{2}, \sqrt{3}, 2 \pi$
6. Real Number - Any number! Abbreviated as R.

Putting it all together:

- A number can be in more than one set. For instance, the number $\frac{5}{12}$ is in Q and R.

Ex. 4: N, W, I, Q, R
Ex. -13: I, Q, R
Ex. $\sqrt{17}$: Irrational, R

- Operations (addition, subtraction, multiplication, division, exponents) can affect what set a number is in.

Ex. $\frac{2}{5}+\frac{3}{5}$ While both numbers are rational, if you add them together, you get $\frac{5}{5}=1$. Therefore, it is natural, whole, rational, and real.

Ex. $\pi+5$ Because π is an irrational number and 5 is a natural number, adding them together will get you another irrational number.

Guided Practice:

Identify all of the sets the following numbers are in:

1. $-\frac{5}{16}$
(Q, R)
2. 83
(N, W, Z, Q, R)
3. 0
(W, Z, Q, R)
4. $5-\sqrt{45}$
(Irrational, R)
5. $10-5.266$
(Q, R)

There are some numbers that don't belong in any set—if we ever see something like $\sqrt{-4}$, it's not possible to do. So it doesn't belong to a set.

Important: There is a difference between $\sqrt{-4}$ and $-\sqrt{4}$. The first one has no solution; the second one is -2 .

